STRAP

2020

The STRAP consortium aims to reduce the burden of heart disease by early detecting heart disease deterioration, benefiting patients, healthcare workers, and society. This initiative responds to acute needs observed in cardiology clinics, combined with the increasing availability of health tracking technologies. The project focuses on developing a new, AI-powered solution using cost-effective technology to maximize impact on healthcare costs.

The Research
STRAP is dedicated to developing a comprehensive data collection platform integrating off-the-shelf and cutting-edge self-tracking technologies. This platform empowers patients to measure vital signs at home, eliminating the need for frequent clinic visits and enabling longitudinal data collection on daily activities and emotions. The platform enhances self-tracking adherence through gamification strategies. The project involves developing and evaluating novel diagnostic and prognostic methods through two trials with target groups where notable improvements are achievable and highly impactful:

  1. Trial for Elderly Heart Patients: reducing re-hospitalization among elderly heart patients to minimize health deterioration and healthcare costs.
  2. Trial at Cardiac Outpatient Clinics: lower costs and enhance the quality of heart disease diagnosis for individuals attending cardiac outpatient clinics.

The foundation of the trials is twofold. Establishing a Robust Dataset: creating an interconnected dataset to evaluate digitalized techniques' performance in relation to health records. This dataset incorporates electrocardiography data, stethoscope audio recordings, wrist-worn device activity levels, electronic nose sensor data, and self-reported information via IoT technologies, including parameters like water consumption, sleep patterns, real-time feelings, physiological responses, and overall patient well-being. Employing this diverse dataset, STRAP develops innovative analysis and early diagnosis methods to advance heart disease detection and monitoring.

Through these efforts, STRAP aims to implement advanced technologies and data-driven approaches to significantly impact heart disease management.

Origin
This project was funded within the Big Data & Health Program. The focus of this public-private research program is the use of big data for the early detection and prevention of cardiovascular diseases. The program has been developed by NWO, ZonMw, the Dutch Heart Foundation, the Top Sectors Life Sciences & Health (LSH), ICT and Creative Industry, the Ministry of Health, Welfare and Sport, and the Netherlands eScience Center. Within this research program, the ambitions of the Dutch Heart Foundation, the Ministry of Health, Welfare and Sport, and the Netherlands eScience Center were aligned with the ambitions of Commit2Data for the Top Sectors ICT, LSH, and Creative Industry, as described in the 2018-2019 Kennis- en Innovatiecontracts between NWO and the Top Sectors.

Read More

Collaborators

Contact person:

P. Markopoulos

Principal investigators

Read more

Phaedra-impact

2018
Pulmonary Hypertension (PH), particularly Pulmonary Arterial Hypertension (PAH), presents a fatal complication in chronic diseases, affecting 1 in 50,000 individuals, predominantly at a young age and more often in females. The underlying genetic link involves mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene, disrupting BMP signaling. The PHAEDRA-IMPACT consortium aims to understand PH and PAH. The Research The research focuses on understanding PAH through the transforming growth factor-β (TGFβ) signaling pathway, particularly influenced by mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene, prevalent in heritable and some non-hereditary PAH cases. The PHAEDRA initiative identified compounds that modulate the TGFβ/BMP balance, showing efficacy in restoring endothelial function and reversing pulmonary vascular remodeling in preclinical models, though not curing PAH, making early detection crucial. PHAEDRA has identified biomarkers for timely diagnosis and personalized treatment. PHAEDRA-IMPACT will enhance early detection using non-invasive risk assessments, imaging, and biomarker profiling to detect pre-capillary PH. Precision medicine will guide tailored therapies based on advanced imaging and biomarker analyses, addressing disease progression variability among predisposed individuals. Additionally, patient-derived induced pluripotent stem (iPS) cells will be used in 3D culture models of lung and heart tissues to uncover PAH mechanisms and identify therapeutic targets. This comprehensive approach aims to advance our understanding of PAH pathogenesis, accelerate drug development, and enable personalized treatment and preventive strategies for individuals at risk or affected by PH. Origin This consortium was funded through the Impulse Grant program by the Dutch Heart Foundation.
Learn more

HBCx

2019
Cardiovascular disease (CVD) and dementia are closely intertwined, often resulting in cognitive impairment among individuals with cardiovascular or cerebrovascular conditions. Approximately one-third of dementia cases are linked to vascular injury, emphasizing that vascular cognitive impairment (VCI) is a preventable aspect of cognitive decline. The Focus The Heart-Brain Connection Crossroads (HBCx) consortium investigates hemodynamic alterations as reversible contributors to VCI, seeking to enhance our understanding of the connection between cardiovascular health and cognitive function. The Research HBCx builds upon the foundation laid by HBC1 (CVON 2012-06), which established a national network dedicated to studying, diagnosing, and treating VCI. Clinical investigations within HBC1, focusing on patients with chronic heart failure (CHF), carotid occlusive disease (COD), and clinically evident VCI, emphasized the role of hemodynamics along the heart-brain axis in VCI. These findings underscored significant associations between heart-brain connections and VCI. The HBCx program, launched in 2019, takes a comprehensive approach by investigating hemodynamics in key cardiac conditions such as atrial fibrillation and heart failure, while also exploring vascular factors and their interplay with amyloid pathology. Moreover, HBCx considers modulating factors like age and sex. The program aims to improve early detection, identify treatable targets, and integrate the Heart-Brain Connection approach into routine care. Ultimately, the long-term vision of HBCx is to reduce VCI prevalence among CVD patients through enhanced understanding and innovative treatment strategies. Origin This consortium was funded through the Impulse Grant program by the Dutch Heart Foundation.
Learn more
1 2 3 19

Looking for
Another item?

Back to overview
Newsletter
© 2024 Oscar Prent Assurantiën BV 
© 2024 | DCVA
Design & development:
Design & Bouw door: