GENIUS II

2018

The GENIUS II (Generating Evidence-Based Pharmaceutical Targets and Drugs for Atherosclerosis) consortium is dedicated to studying atherosclerosis, the primary pathological condition underlying cardiovascular diseases. The consortium aims to translate identified druggable targets for atherosclerosis intervention into clinical applications. Gender specificity is a key consideration in all our studies. Our consortium's talent program is structured to provide young researchers with insights into the opportunities and challenges of cardiovascular drug development.

The Research
GENIUS II research integrates knowledge of dyslipidemia and associated immune responses. Our work is organized into distinct work packages that correspond to the logical steps in drug development. Each selected target from GENIUS I is strategically incorporated into this framework. Our investigations encompass in vitro and in vivo analyses to understand mechanisms, druggability, and effects on atherosclerosis.

In addition to building upon GENIUS I drug targets and leads, we leverage recent innovative advancements to identify new druggable targets within male and female atherosclerotic lesions, as well as in circulating cells. State-of-the-art molecular biology techniques, including single cell sequencing and immunophenotyping, are actively employed to dissect immunometabolic processes within atherosclerotic plaques and patients. These studies will enable us to monitor the presence of drug targets at disease sites, expediting drug design and potentially identifying gender-specific biomarkers to aid disease progression monitoring and diagnosis.

Subsequent studies involve testing the efficacy of small molecules, monoclonal antibodies, and siRNA against pre-selected targets from GENIUS I. We have identified small molecules and monoclonal antibodies for five targets, which will undergo toxicity and proof-of-pharmacology studies to progress towards drug development for cardiovascular patients. We have also identified three drugs affecting primary targets from GENIUS I and are assessing their potential to reduce atherosclerotic parameters in First-In-Human clinical trials.

Origin
This consortium was funded through the Impulse Grant program by the Dutch Heart Foundation. The GENIUS II consortium builds on the most promising targets identified in the GENIUS I consortium, with the goal of advancing these targets towards clinical application.

Read More

Collaborators

Principal investigators

Read more

OUTREACH

2021
The successful treatment of congenital heart disease (ConHD) has greatly increased the survival of children with this condition. Many of these defects require surgical or catheter interventions immediately after birth. However, complete restoration of the defect is often unachievable, a high risk of developing heart failure, arrhythmias, sudden cardiac death or blood vessel dilatation or stenosis relatively early in life. Currently, there is a lack of personalized risk predictors and optimal clinical decision tools, highlighting an unmet need to develop new effective strategies for treating and preventing ventricular failure, arrhythmias, and large vessel diseases. The Focus The OUTREACH consortium focuses on specific types of congenital heart diseases (ConHD) related to outflow tract defects, such as transposition of the great arteries, congenital aortic stenosis, and tetralogy of Fallot, which collectively account for over half of all ConHD cases. The goal of OUTREACH is to reduce the risk of mortality and morbidity and improve the quality of life for these patients (both children and adults) by improving follow-up practices based on outcomes, implementing personalized risk assessment tools, and advancing therapeutic strategies. The Research The OUTREACH consortium integrates expertise in preclinical research, developmental biology, disease modeling, and clinical research from academic centers specializing in pediatric and adult congenital cardiology and surgery. Its objectives are: identifying better parameters for risk assessment and early detection of heart failure or ventricular arrhythmias in ConHD patients with outflow tract defects. Exploring efficient treatments to enhance adaptation and prevent heart failure and vascular damage in at-risk ConHD patients. This consortium conducts extensive research involving a large cohort of ConHD patients to unravel the underlying causes and mechanisms of cardiac adaptations following surgical interventions. It investigates the molecular mechanisms responsible for outflow tract defects and evaluates whether stimulating heart regeneration in ConHD models can mitigate adverse remodeling and heart failure. Additionally, the consortium explores new non-invasive imaging techniques and blood-derived biomarkers to develop innovative risk analysis tools for clinical decision-making. In OUTREACH a nationwide registry is created for all patients (children and adults) with ConHD in the Netherlands by harmonizing existing registries KinCor and ConCor. This is an important step towards optimizing the quality of care for the ConHD population and fostering scientific research on ConHD. Origin The Dutch Heart Foundation and Stichting Hartekind, who collaborate within the Dutch CardioVascular Alliance, initiated an invitational grant to start and fund large-scale research aimed at earlier detection and better treatment of the consequences of congenital heart defects.
Learn more

ECG project UMCU

2020
The correct interpretation of electrocardiograms (ECGs) is crucial for accurately diagnosing cardiac abnormalities. Current methods, both manual by physicians and computerized, have not achieved the level of accuracy comparable to cardiologists in detecting acute cardiac issues. Leveraging advancements in artificial intelligence and big data, particularly deep neural networks, offers promising avenues to improve ECG interpretation where traditional methods have fallen short. The ECG-Project develops deep learning algorithms to automate ECG interpretation, particularly focusing on areas where current methods are inadequate. Through this research, we aim to revolutionize ECG interpretation, improving diagnostic accuracy, reducing healthcare resource utilization, and ultimately enhancing patient outcomes. The Research The project objectives are: WP1: Creating an algorithm capable of accurately and swiftly triaging ECGs through transfer learning, uncovering features in diseases with unknown ECG characteristics (such as primary arrhythmia syndromes and genetic disorders). WP2: design a portable multi-lead ecg-device, suitable for use by patients at home and healthcare professionals. This device will enable high-quality ECG acquisitions for rapid diagnosis. Origin This project is funded within the Innovative Medical Devices Initiative (IMDI) program 'Heart for Sustainable Care'. The focus of this program is the development of medical technology for the earlier detection, monitoring, and better treatment of cardiovascular diseases to ensure accessible healthcare and sufficient staffing. The program has been developed and funded by the Dutch Heart Foundation, ZonMw and NWO, who collaborate within the Dutch CardioVascular Alliance.
Learn more
1 2 3 19

Looking for
Another item?

Back to overview
Newsletter
© 2024 Oscar Prent Assurantiën BV 
© 2024 | DCVA
Design & development:
Design & Bouw door: