IMPRESS

2021

In the past decade, there has been significant progress in understanding sex- and gender-based differences in cardiovascular diseases (CVD). However, this knowledge remains scattered across medical literature, highlighting the need for a centralized platform accessible to healthcare professionals, scientists, policymakers, and patients. The IMPRESS consortium aims to establish a knowledge platform focused on gathering, summarizing, and prioritizing existing knowledge related to sex- and gender-specific aspects of CVD. This initiative seeks to promote the implementation of existing knowledge into clinical practice, identify knowledge gaps, and inform policymakers about areas requiring additional attention.

In substantial portions of women with symptoms of myocardial ischemia, obstructive disease in the epicardial coronary arteries is absent. Currently, such women undergo multiple diagnostic tests, which do not always result in a conclusive diagnosis. IMPRESS seeks to reduce missed and delayed diagnoses of heart diseases in women, improving cardiovascular care outcomes nationwide. The knowledge platform will serve as a national resource, fostering collaboration and supporting the adoption of sex- and gender-sensitive practices in cardiovascular medicine.


The Research

IMPRESS consolidates existing knowledge, fosters research, and implements findings into practice wherever possible (for example by creating a Decision Support Tool for primary care and for cardiologists). Within the IMPRESS consortium, the following studies are being conducted:

  • Delphi study: delayed or missed diagnosis of heart disease
  • Silent heart attacks: causes, symptoms, and risk factors of silent myocardial infarctions
  • UMCU-IMPRESS pilot study: undetected coronary microvascular disease (CMD)
  • Peripheral-Flow: LASCA technique in CMD
  • Dutch registry of coronary function tests

 

The origin

In the past decade, the understanding of sex- and gender differences in CVD has considerably improved. However, relevant evidence is scattered throughout the medical literature. There is a need to make this information easily accessible to health care professionals, scientists, policy makers and patients. Implementation of existing knowledge in clinical practice will then be promoted, knowledge gaps identified, and policy makers informed on the areas that need additional attention. This is also of high importance to the Dutch Heart Foundation, which therefore funded the IMPRESS consortium; a collaboration between several DCVA partners; the Nederlandse Vereniging voor Cardiologie (NVVC), WCN, Netherlands Heart Institute (NLHI), ZonMw and the Dutch Heart Foundation, supported by the DCVA.

 

Read More

Collaborators

Contact person:

Principal investigators

Read more

RECONNEXT

2021
Heart failure represents a significant healthcare challenge due to its high morbidity and mortality rates. Historically, the emphasis has been on heart failure with reduced ejection fraction characterized by left ventricular dilation. However, nearly half of heart failure patients involve diastolic dysfunction due to heart chamber stiffening, known as diastolic heart failure or HFpEF. The Focus Research conducted by our consortium indicates that impaired kidney function is an is a strong risk factor for HFpEF. Patients with chronic kidney disease are more prone to developing HFpEF and have higher mortality rates from associated complications. The specific mechanisms by which even slight declines in renal function worsen cardiovascular risk and impact the development and prognosis of HFpEF are not yet fully understood. Insights from RECONNECT highlight the pivotal role of systemic inflammation and microvasculature in this context. The Research RECONNEXT (Renal connection to microvascular disease and HFpEF: the next phase) is a multicenter consortium dedicated on advancing medical research on heart failure - particularly heart failure with preserved ejection fraction (HFpEF) - in relation to impaired kidney function. Specific pre-clinical and clinical research objectives have been defined: Identify renal drivers for HFpEF onset and progression in subgroups/clusters of HFpEF patients, taking patient-specific risk profiles into account. Deepen our understanding of the mechanistic pathways involved in the pathogenic cross-talk between renal drivers, systemic inflammation, microvasculature, and cardiac cells leading to HFpEF, using dedicated ex vivo bioassays to assess patient material and in vivo small and large animal models. Investigate the most promising therapeutic targets in newly developed and well-characterized state-of-the art rodent and porcine models of CKD-associated HFpEF, taking comorbidities into account. Investigate the most promising therapeutic, diagnostic and prognostic candidate(s) in well-defined patient-groups by taking a stratified approach. We expect that the results of this project will enhance our mechanistic insight in the renal drivers of HFpEF development and progression and will lead to the development of personalized diagnostic, prognostic and therapeutic solutions for HFpEF patients. The origin The RECONNECT consortium has provided fundamental knowledge on the connection between chronic kidney disease and HFpEF and established a translational pipeline for the discovery and evaluation of potential diagnostic, prognostic and therapeutic targets. RECONNEXT builds upon the success of RECONNECT, established in 2015 (see Figure 1 below), supported by CardioVasculair Onderzoek Nederland (CVON) and the Dutch Heart Foundation. The RECONNEXT consortium consists of nephrologists, cardiologists, general practitioners, and scientists from five leading academic centers in the Netherlands (UMC Utrecht, Erasmus MC, UMC Groningen, Amsterdam UMC, Leiden University) renowned for their expertise in heart failure, vascular biology, and chronic kidney disease.    
Learn more

Holland Hybrid Heart

2023
In the Netherlands, there are 250,000 patients with heart failure. Half of these patients die within five years. The best treatment: a donor heart. But: there is a great shortage of these. The Holland Hybrid Heart consortium is therefore working on an alternative: a robot heart, made of soft materials. The research We envision the treatment of patients with heart failure (HF) in such a way that the survival and quality of life of HF patients drastically increases. We aim to achieve this by developing a unique bioinspired total artificial heart that integrates soft robotics and tissue engineering (TE). In the long term, we foresee that this pioneering technology allows us to develop and bring to the clinic a full set of artificial motile organs and tissues that seamlessly integrate with the human body. This will be possible as the novel and exciting technologies underlying the artificial heart developed in this project - soft robotics and in situ TE - can be used to generate a broad range of artificial motile organs such as muscle structures (e.g., limbs), bowels or lungs: The motility and flexibility in shape and size of soft robots make them suitable for mimicking motile organs. Actuators can be embedded within the elastomeric matrix of these robots without compromising their malleable properties. In addition, embodied intelligence provides direct feedback on shape and force, enabling natural behaviour. Biocompatibility of these artificial organs is provided by TE inside the body (in situ) using biodegradable coatings or scaffolds. Such TE scaffolds are cell-free synthetic bio-resorbable implants or linings that can recruit or interact with cells from the bloodstream, leading to gradual replacement of the scaffold by fully endogenous, and thus biocompatible, tissue. Importantly, the cell-free and thus off-the-shelf availability of these scaffolds avoids the high costs and complex logistics inherent to pre-implantation in vitro TE. The Holland Hybrid Heart (HHH) consortium will push the development of these newly emerging technologies forward and combines soft robotics and in situ TE to generate the first biocompatible, soft actuated heart. This project will deliver Proof-of-Principle for full in vivo cardiac functionality of the artificial HHH in large animals. If successful, the HHH will be available for translation to the clinic as an effective treatment for advanced HF in patients and a valid alternative for moderately effective current HF therapies. This is a quantum leap forward in the treatment of HF. Origin A photo in the newspaper inspired Rotterdam heart specialist Jolanda Kluin to develop a robot heart. Kluin immediately contacted the interviewee in the article, Bas Overvelde, head of the Soft Robotic Matter group at Amolf, which develops soft robots. Could he perhaps also make a heart using soft robot techniques? Overvelde believed in it and a collaboration was born. Five years ago, they received a European subsidy of more than 3 million euros. This grant started the previous EU consortium, the EU Hybrid Heart. Last December (2023), Kluin received another 11 million euros from the Dutch government to continue the Holland hybrid heart project. The Holland Hybrid Heart has pivoted to meet the demands of that new grant and now only contains 15 Dutch consortium partners. The consortium is funded by NWA-ORC and the Dutch Heart Foundation. In-kind contributions are also provided by the DCVA, the Dutch Heart Foundation, TrailBlazers, SBMC, EVOS and EE-Labels. The executing academic partners are Erasmus MC, Amolf, TU Eindhoven, University of Twente, TU Delft and Saxion Applied University. This research is driven by patient needs and the Harteraad and Stichting Pulmonale Hypertensie will provide the connections to these patients.
Learn more
1 2 3 19

Looking for
Another item?

Back to overview
Newsletter
© 2024 Oscar Prent Assurantiën BV 
© 2024 | DCVA
Design & development:
Design & Bouw door: