GENIUS II

2018

The GENIUS II (Generating Evidence-Based Pharmaceutical Targets and Drugs for Atherosclerosis) consortium is dedicated to studying atherosclerosis, the primary pathological condition underlying cardiovascular diseases. The consortium aims to translate identified druggable targets for atherosclerosis intervention into clinical applications. Gender specificity is a key consideration in all our studies. Our consortium's talent program is structured to provide young researchers with insights into the opportunities and challenges of cardiovascular drug development.

The Research
GENIUS II research integrates knowledge of dyslipidemia and associated immune responses. Our work is organized into distinct work packages that correspond to the logical steps in drug development. Each selected target from GENIUS I is strategically incorporated into this framework. Our investigations encompass in vitro and in vivo analyses to understand mechanisms, druggability, and effects on atherosclerosis.

In addition to building upon GENIUS I drug targets and leads, we leverage recent innovative advancements to identify new druggable targets within male and female atherosclerotic lesions, as well as in circulating cells. State-of-the-art molecular biology techniques, including single cell sequencing and immunophenotyping, are actively employed to dissect immunometabolic processes within atherosclerotic plaques and patients. These studies will enable us to monitor the presence of drug targets at disease sites, expediting drug design and potentially identifying gender-specific biomarkers to aid disease progression monitoring and diagnosis.

Subsequent studies involve testing the efficacy of small molecules, monoclonal antibodies, and siRNA against pre-selected targets from GENIUS I. We have identified small molecules and monoclonal antibodies for five targets, which will undergo toxicity and proof-of-pharmacology studies to progress towards drug development for cardiovascular patients. We have also identified three drugs affecting primary targets from GENIUS I and are assessing their potential to reduce atherosclerotic parameters in First-In-Human clinical trials.

Origin
This consortium was funded through the Impulse Grant program by the Dutch Heart Foundation. The GENIUS II consortium builds on the most promising targets identified in the GENIUS I consortium, with the goal of advancing these targets towards clinical application.

Read More

Collaborators

Contact person:

Principal investigators

Read more

DOUBLE DOSE

2021
Cardiomyopathies, caused by genetic mutations affecting cardiac muscle components, pose significant economic and societal burdens due to their hereditary nature and early onset. Despite known genetic defects, predicting disease progression remains challenging due to extreme clinical variability. Recent research indicates that cardiomyopathy mutations induce metabolic stress, exacerbated by factors like obesity, which can accelerate disease progression. The Double Dose hypothesis suggests that targeting metabolic stress may offer preventive or curative strategies for these conditions. The Focus The Double Dose Consortium aims to understand how cardiomyopathy-causing mutations lead to structural changes in cardiomyocytes. This interdisciplinary effort combines experts in preclinical research, clinical genetics, health technology assessment, and clinical care focused on cardiomyopathy in both children and adults. The Research The consortium combines experts in preclinical research, clinical genetics, health technology assessment and clinical researchers with a strong clinical focus on cardiomyopathy in children and adults. These experts investigate how obesity and muscle adiposity contribute to vascular and cardiac muscle dysfunction in mutation carriers through the analysis of clinical data, patient samples, and experimental models. They will also study the mechanisms underlying ultrastructural changes in cardiomyocytes caused by these mutations, leading to impaired metabolism, contraction, relaxation defects, and disrupted cellular communication within the heart. Utilizing extensive patient cohorts and ongoing studies, the consortium aims to optimize care for cardiomyopathy patients by assessing the cost-effectiveness of diagnostics and clinical interventions. They plan to translate findings on metabolic alterations into clinical trials targeting treatments that reduce metabolic stress. The Double Dose program will establish biobanks containing serum, tissue, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to provide mechanistic insights into cardiomyopathy pathophysiology and improve diagnosis and care. Origin This consortium was funded through the Impulse Grant program by the Dutch Heart Foundation, together with Stichting Hartedroom. The consortium is a continuation of the Dosis consortium, in which the interaction between mutation and external factors was investigated. They found that cardiomyopathy-mutations induce metabolic stress and that secondary metabolic stress, such as obesity accelerates disease progression.  
Learn more

OUTREACH

2021
The successful treatment of congenital heart disease (ConHD) has greatly increased the survival of children with this condition. Many of these defects require surgical or catheter interventions immediately after birth. However, complete restoration of the defect is often unachievable, a high risk of developing heart failure, arrhythmias, sudden cardiac death or blood vessel dilatation or stenosis relatively early in life. Currently, there is a lack of personalized risk predictors and optimal clinical decision tools, highlighting an unmet need to develop new effective strategies for treating and preventing ventricular failure, arrhythmias, and large vessel diseases. The Focus The OUTREACH consortium focuses on specific types of congenital heart diseases (ConHD) related to outflow tract defects, such as transposition of the great arteries, congenital aortic stenosis, and tetralogy of Fallot, which collectively account for over half of all ConHD cases. The goal of OUTREACH is to reduce the risk of mortality and morbidity and improve the quality of life for these patients (both children and adults) by improving follow-up practices based on outcomes, implementing personalized risk assessment tools, and advancing therapeutic strategies. The Research The OUTREACH consortium integrates expertise in preclinical research, developmental biology, disease modeling, and clinical research from academic centers specializing in pediatric and adult congenital cardiology and surgery. Its objectives are: identifying better parameters for risk assessment and early detection of heart failure or ventricular arrhythmias in ConHD patients with outflow tract defects. Exploring efficient treatments to enhance adaptation and prevent heart failure and vascular damage in at-risk ConHD patients. This consortium conducts extensive research involving a large cohort of ConHD patients to unravel the underlying causes and mechanisms of cardiac adaptations following surgical interventions. It investigates the molecular mechanisms responsible for outflow tract defects and evaluates whether stimulating heart regeneration in ConHD models can mitigate adverse remodeling and heart failure. Additionally, the consortium explores new non-invasive imaging techniques and blood-derived biomarkers to develop innovative risk analysis tools for clinical decision-making. In OUTREACH a nationwide registry is created for all patients (children and adults) with ConHD in the Netherlands by harmonizing existing registries KinCor and ConCor. This is an important step towards optimizing the quality of care for the ConHD population and fostering scientific research on ConHD. Origin The Dutch Heart Foundation and Stichting Hartekind, who collaborate within the Dutch CardioVascular Alliance, initiated an invitational grant to start and fund large-scale research aimed at earlier detection and better treatment of the consequences of congenital heart defects.
Learn more
1 2 3 19

Looking for
Another item?

Back to overview
Newsletter
© 2024 Oscar Prent Assurantiën BV 
© 2024 | DCVA
Design & development:
Design & Bouw door: