FORSEE

2020

Clinical staff in hospital wards traditionally collect vital signs periodically to assess a patient's cardiorespiratory status, often with intervals of 6 to 10 hours. This method, known as spot-checking, has limitations due to its infrequent nature and dependence on contact sensors, which can be uncomfortable for patients, particularly during sleep.

The Focus
Recent advancements demonstrate that vital signs like heart rate, respiration rate, blood oxygen saturation, and temperature can be monitored remotely using camera-based methods, which are less invasive compared to contact sensors. This innovation could significantly enhance patient comfort by enabling continuous monitoring without the need for frequent interventions by clinical staff. Continuous monitoring also allows for trend analysis of vital signs, offering a comprehensive assessment of a patient's cardiorespiratory condition. Additionally, camera-based methods enable video context analysis, such as detecting patient movements or identifying pain through facial expression analysis. This project explores the use of continuous video monitoring as an unobtrusive method to predict and monitor patient deterioration or adverse events.

The Research
Initially, the feasibility and reliability of camera-based continuous monitoring will be evaluated using data from consenting patients in the ICU at Catharina Hospital in Eindhoven and healthy volunteers. Subsequently, robust technologies will be developed to automatically detect signs of patient deterioration by generating automated early warning scores based on measured vital signs. Throughout the project, feedback from clinical staff and patient experiences will inform the design and implementation of camera-based technologies and early warning systems.

Origin
This project is funded within the Innovative Medical Devices Initiative (IMDI) program 'Heart for Sustainable Care'. The focus of this program is the development of medical technology for the earlier detection, monitoring, and better treatment of cardiovascular diseases to ensure accessible healthcare and sufficient staffing. The program has been developed en funded by the Dutch Heart Foundation, ZonMw and NWO, who collaborate within the Dutch CardioVascular Alliance.

Read More

Funded

Contact person:

Prof. dr. J.W.M. Bergmans

Principal investigators

Read more

Holland Hybrid Heart

2023
In the Netherlands, there are 250,000 patients with heart failure. Half of these patients die within five years. The best treatment: a donor heart. But: there is a great shortage of these. The Holland Hybrid Heart consortium is therefore working on an alternative: a robot heart, made of soft materials. The research We envision the treatment of patients with heart failure (HF) in such a way that the survival and quality of life of HF patients drastically increases. We aim to achieve this by developing a unique bioinspired total artificial heart that integrates soft robotics and tissue engineering (TE). In the long term, we foresee that this pioneering technology allows us to develop and bring to the clinic a full set of artificial motile organs and tissues that seamlessly integrate with the human body. This will be possible as the novel and exciting technologies underlying the artificial heart developed in this project - soft robotics and in situ TE - can be used to generate a broad range of artificial motile organs such as muscle structures (e.g., limbs), bowels or lungs: The motility and flexibility in shape and size of soft robots make them suitable for mimicking motile organs. Actuators can be embedded within the elastomeric matrix of these robots without compromising their malleable properties. In addition, embodied intelligence provides direct feedback on shape and force, enabling natural behaviour. Biocompatibility of these artificial organs is provided by TE inside the body (in situ) using biodegradable coatings or scaffolds. Such TE scaffolds are cell-free synthetic bio-resorbable implants or linings that can recruit or interact with cells from the bloodstream, leading to gradual replacement of the scaffold by fully endogenous, and thus biocompatible, tissue. Importantly, the cell-free and thus off-the-shelf availability of these scaffolds avoids the high costs and complex logistics inherent to pre-implantation in vitro TE. The Holland Hybrid Heart (HHH) consortium will push the development of these newly emerging technologies forward and combines soft robotics and in situ TE to generate the first biocompatible, soft actuated heart. This project will deliver Proof-of-Principle for full in vivo cardiac functionality of the artificial HHH in large animals. If successful, the HHH will be available for translation to the clinic as an effective treatment for advanced HF in patients and a valid alternative for moderately effective current HF therapies. This is a quantum leap forward in the treatment of HF. Origin A photo in the newspaper inspired Rotterdam heart specialist Jolanda Kluin to develop a robot heart. Kluin immediately contacted the interviewee in the article, Bas Overvelde, head of the Soft Robotic Matter group at Amolf, which develops soft robots. Could he perhaps also make a heart using soft robot techniques? Overvelde believed in it and a collaboration was born. Five years ago, they received a European subsidy of more than 3 million euros. This grant started the previous EU consortium, the EU Hybrid Heart. Last December (2023), Kluin received another 11 million euros from the Dutch government to continue the Holland hybrid heart project. The Holland Hybrid Heart has pivoted to meet the demands of that new grant and now only contains 15 Dutch consortium partners. The consortium is funded by NWA-ORC and the Dutch Heart Foundation. In-kind contributions are also provided by the DCVA, the Dutch Heart Foundation, TrailBlazers, SBMC, EVOS and EE-Labels. The executing academic partners are Erasmus MC, Amolf, TU Eindhoven, University of Twente, TU Delft and Saxion Applied University. This research is driven by patient needs and the Harteraad and Stichting Pulmonale Hypertensie will provide the connections to these patients.
Learn more

DECISION

2020
Digoxin is the oldest, market-authorized drug for heart failure (HF), and very cheap. A large trial with digoxin, the DIG trial, executed in the early nineties revealed a highly significant reduction in HF hospitalizations, but no effect on mortality. A post-hoc analysis of the DIG trial suggests that low serum concentrations of digoxin may not only improve HF hospitalizations but also mortality in chronic HF patients. To validate these findings, a prospective, randomized, placebo-controlled trial is required to redefine the role of digoxin in modern HF treatment. The Focus The primary objective of this study is to investigate whether low-level digoxin (targeting serum concentrations of 0.5-0.9 ng/mL), compared to a placebo, reduces (repeated) HF hospitalizations, (repeated) urgent HF hospital visits, and cardiovascular mortality when added to standard guideline-recommended therapies in chronic HF patients with reduced or mid-range ejection fractions (LVEF ≤50%). The Research This proposed trial is a national, multicenter, randomized, double-blind, placebo-controlled clinical trial involving 982 chronic HF patients aged ≥18 years, classified as NYHA II to ambulatory IV, LVEF ≤50%, and specific serum NT-proBNP concentrations based on rhythm and recent HF hospitalization status. Patients must also be on guideline-recommended therapies. The study population includes at least one-third with atrial fibrillation (AF) and one-third women to represent the real-life HF population. Patients were randomized to receive either a low-level digoxin or a placebo in a double-blinded manner. Digoxin Teva will be administered orally, starting at doses of 0.2mg or 0.1mg (based on age, renal function, and concomitant medication). No loading dose is given to the placebo group. After 4 weeks of evaluating medication (digoxin or placebo), concentrations will be measured. Dose adjustments will be made if needed to reach the target serum digoxin concentration range of 0.5-0.9ng/mL. The outcomes in reducing adverse cardiovascular events in patients with chronic heart failure of low-dose digoxin will be compared to the outcomes of the placebo. The origin This study was funded as part of the Dutch Heart Foundation's collaboration with the ZonMw GGG program on Good Use of Medicines (Goed Gebruik Geneesmiddelen) for better treatment of heart failure and atrial fibrillation, which was one of the 5 priority's that the Dutch Heart Foundation set in 2014. The DECISION study involves 38 hospitals and is led by cardiologists from UMC Groningen and the WCN.
Learn more
1 2 3 20

Looking for
Another item?

Back to overview
Newsletter
© 2024 Oscar Prent Assurantiën BV 
© 2025 | DCVA
Design & Bouw door: