Delta Plan Heart Failure

2023

Heart failure is a severe and chronic condition were the heart is unable to pump blood around the body properly, due to a structural and/or functional abnormality of the heart. It has many different causes, with the most common being hypertension and coronary artery disease. Heart failure is an unpredictable condition with sudden exacerbations of the disease, hospitalization, and will ultimately lead to death. Proper (and early) treatment may improve the symptoms of health failure and may lead to a relatively longer and better quality of life.

The origin

On the cardiovascular disease research agenda, as drawn up at the initiative of the Dutch Heart Foundation in 2014 and revised in 2020, the themes “Earlier recognition of cardiovascular disease” and “Heart failure” have been placed on the agenda. The DCVA also announced the Delta Plan Heart Failure in the 2022 annual plan.

This resulted in the Delta Plan Heart Failure, which is initiated and financed by the Hartstichting, the Netherlands Heart Institute, and the Dutch Cardiovascular Alliance. In this national project, healthcare professionals, researchers, and patients have joined forces and will focus on the entire continuum of the disease from prevention to palliative care.

The research

We expect that burden of disease can largely be reduced by addressing the following key-points:

  • Increasing public awareness of heart failure
  • Early detection of heart failure
  • Stimulating the collaboration among all (different) disciplines within the field of health failure
  • Initiation of research consortia for innovative treatment and management of heart failure patients
  • Furthermore, this project will not only focus on positively influencing survival but also on optimizing the patient’s quality of life and will pursue a strategic and operational approach.
Read More

Collaborators

Funded

Contact person:

Moniek Koopman (Project Coordinator)

Principal investigators

Read more

DOUBLE DOSE

2021
Cardiomyopathies, caused by genetic mutations affecting cardiac muscle components, pose significant economic and societal burdens due to their hereditary nature and early onset. Despite known genetic defects, predicting disease progression remains challenging due to extreme clinical variability. Recent research indicates that cardiomyopathy mutations induce metabolic stress, exacerbated by factors like obesity, which can accelerate disease progression. The Double Dose hypothesis suggests that targeting metabolic stress may offer preventive or curative strategies for these conditions. The Focus The Double Dose Consortium aims to understand how cardiomyopathy-causing mutations lead to structural changes in cardiomyocytes. This interdisciplinary effort combines experts in preclinical research, clinical genetics, health technology assessment, and clinical care focused on cardiomyopathy in both children and adults. The Research The consortium combines experts in preclinical research, clinical genetics, health technology assessment and clinical researchers with a strong clinical focus on cardiomyopathy in children and adults. These experts investigate how obesity and muscle adiposity contribute to vascular and cardiac muscle dysfunction in mutation carriers through the analysis of clinical data, patient samples, and experimental models. They will also study the mechanisms underlying ultrastructural changes in cardiomyocytes caused by these mutations, leading to impaired metabolism, contraction, relaxation defects, and disrupted cellular communication within the heart. Utilizing extensive patient cohorts and ongoing studies, the consortium aims to optimize care for cardiomyopathy patients by assessing the cost-effectiveness of diagnostics and clinical interventions. They plan to translate findings on metabolic alterations into clinical trials targeting treatments that reduce metabolic stress. The Double Dose program will establish biobanks containing serum, tissue, and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) to provide mechanistic insights into cardiomyopathy pathophysiology and improve diagnosis and care. Origin This consortium was funded through the Impulse Grant program by the Dutch Heart Foundation, together with Stichting Hartedroom. The consortium is a continuation of the Dosis consortium, in which the interaction between mutation and external factors was investigated. They found that cardiomyopathy-mutations induce metabolic stress and that secondary metabolic stress, such as obesity accelerates disease progression.  
Learn more

RECONNEXT

2021
Heart failure represents a significant healthcare challenge due to its high morbidity and mortality rates. Historically, the emphasis has been on heart failure with reduced ejection fraction characterized by left ventricular dilation. However, nearly half of heart failure patients involve diastolic dysfunction due to heart chamber stiffening, known as diastolic heart failure or HFpEF. The Focus Research conducted by our consortium indicates that impaired kidney function is an is a strong risk factor for HFpEF. Patients with chronic kidney disease are more prone to developing HFpEF and have higher mortality rates from associated complications. The specific mechanisms by which even slight declines in renal function worsen cardiovascular risk and impact the development and prognosis of HFpEF are not yet fully understood. Insights from RECONNECT highlight the pivotal role of systemic inflammation and microvasculature in this context. The Research RECONNEXT (Renal connection to microvascular disease and HFpEF: the next phase) is a multicenter consortium dedicated on advancing medical research on heart failure - particularly heart failure with preserved ejection fraction (HFpEF) - in relation to impaired kidney function. Specific pre-clinical and clinical research objectives have been defined: Identify renal drivers for HFpEF onset and progression in subgroups/clusters of HFpEF patients, taking patient-specific risk profiles into account. Deepen our understanding of the mechanistic pathways involved in the pathogenic cross-talk between renal drivers, systemic inflammation, microvasculature, and cardiac cells leading to HFpEF, using dedicated ex vivo bioassays to assess patient material and in vivo small and large animal models. Investigate the most promising therapeutic targets in newly developed and well-characterized state-of-the art rodent and porcine models of CKD-associated HFpEF, taking comorbidities into account. Investigate the most promising therapeutic, diagnostic and prognostic candidate(s) in well-defined patient-groups by taking a stratified approach. We expect that the results of this project will enhance our mechanistic insight in the renal drivers of HFpEF development and progression and will lead to the development of personalized diagnostic, prognostic and therapeutic solutions for HFpEF patients. The origin The RECONNECT consortium has provided fundamental knowledge on the connection between chronic kidney disease and HFpEF and established a translational pipeline for the discovery and evaluation of potential diagnostic, prognostic and therapeutic targets. RECONNEXT builds upon the success of RECONNECT, established in 2015 (see Figure 1 below), supported by CardioVasculair Onderzoek Nederland (CVON) and the Dutch Heart Foundation. The RECONNEXT consortium consists of nephrologists, cardiologists, general practitioners, and scientists from five leading academic centers in the Netherlands (UMC Utrecht, Erasmus MC, UMC Groningen, Amsterdam UMC, Leiden University) renowned for their expertise in heart failure, vascular biology, and chronic kidney disease.    
Learn more
1 2 3 19

Looking for
Another item?

Back to overview
Newsletter
© 2024 Oscar Prent Assurantiën BV 
© 2024 | DCVA
Design & development:
Design & Bouw door: